

Student Number

2021

100

Mathematics Extension 2

Trial HSC Examination

Date: Monday 23th August, 2021

General Instructions	•	Reading time – 10 minutes Working time – 3 hours Write using blue or black pen
	•	NESA approved calculators may be used Show relevant mathematical reasoning and/or calculations

Total Marks: Section I – 10 marks

Allow about 15 minutes for this section

Section II - 90 marks

Allow about 2 hours and 45 minutes for this section

Section I (10 marks)	Multiple Choice	/10
Section II (90 marks)	Question 11	/15
	Question 12	/15
	Question 13	/13
	Question 14	/17
	Question 15	/15
	Question 16	/15
	Total	/100

This question paper must not be removed from the examination room. This assessment task constitutes 0% of the course.

BLANK PAGE

Section I

10 marks Allow about 15 minutes for this section

Use the multiple-choice sheet for Question 1–10

If $z_1 = \sqrt{3} + i\sqrt{3}$ and $z_2 = \sqrt{3} + i$, then the complex number $\left(\frac{z_1}{z_2}\right)$ lies in the 1. quadrant A. Ι B. Π C. III D. IV The resolved part of the force $\underset{\sim}{F} = \underset{\sim}{i} + 2j - 4k$ in the direction of $\underset{\sim}{a} = 2i + 4j - 4k$ 2. is: A. $\frac{13}{9}\left(-\frac{i}{2}+2j-2k\right)$ B. $\frac{13}{9} \left(\begin{array}{c} i + 2j - 2k \\ \vdots \end{array} \right)$

- C. $\frac{13}{9} \left(\begin{array}{c} -i 2j 2k \\ \ddots & \ddots \end{array} \right)$
- D. $\frac{26}{3}\left(\begin{array}{c}i + 2j 2k\\ \\ \\ \\ \end{array}\right)$
- **3.** The direction cosines of a line are $\left(\frac{1}{c}, \frac{1}{c}, \frac{1}{c}\right)$, then
 - A. c > 0
 - B. 0 < c < 1
 - C. $c = \pm \sqrt{3}$
 - D. *c* > 2

Section I continues

- 4. The period of the function $f(x) = |\sin x| + |\cos x|$ is:
 - A. $\frac{\pi}{2}$ B. π
 - C. $\frac{3\pi}{2}$
 - D. 2π

5. The solutions to $z^n = 1 + i$, $n \in Z^+$ are given by

- A. $2^{\frac{1}{2n}}e^{i\left(\frac{\pi}{4n}+\frac{2\pi k}{n}\right)}, \ k \in \mathcal{R}$
- B. $2^{\frac{1}{n}}e^{i\left(\frac{\pi}{4n}+2\pi k\right)}, k \in \mathbb{Z}$
- C. $2^{\frac{1}{2n}}e^{i\left(\frac{\pi}{4}+\frac{2\pi k}{n}\right)}, k \in \mathbb{Z}$

D.
$$2\frac{1}{2n}e^{i\left(\frac{\pi}{4n}+\frac{2\pi k}{n}\right)}, k \in \mathbb{Z}$$

6. If
$$f(y) = e^{y}$$
, $g(y) = y$; $y \ge 0$ and
 $F(t) = \int_{0}^{t} f(t - y)g(y)dy$, then

A. $F(t) = t e^{-t}$

B.
$$F(t) = 1 - e^{-t}(1+t)$$

C.
$$F(t) = e^t - (1+t)$$

D.
$$F(t) = t e^{-t}$$

Section I continues

7. Which of the following statements is a negation of the following statement?

 $x\in \mathcal{R} \iff |x|\geq 0$

- A. $\{x \in \mathcal{R}^+ \text{ and } |x| > 0\} \text{ and } \{|x| > 0 \text{ and } x \in \mathcal{R}\}$
- B. $\{x \in \mathcal{R} \text{ and } |x| \ge 0 \text{ and } \{|x| \ge 0 \text{ and } x \notin \mathcal{R}\}$
- C. $\{x \in \mathcal{R} \text{ and } |x| \ge 0\} \text{ or } \{|x| \ge 0 \text{ and } x \notin \mathcal{R}\}\$
- D. $\{x \in \mathcal{R}^+ \text{ and } |x| \neq 0\}$ and $\{|x| < 0 \text{ and } x \notin \mathcal{R}\}$
- 8. A particle of mass *m* moves in a straight line under the action of a resultant force *F* where F = F(x).

Given that the velocity v is v_0 when the position is $x = x_0$, and that v is v_1 when x is x_1 , it follows that $|v_1| =$

A.
$$\sqrt{\frac{2}{m}} \int_{x_0}^{x_1} \sqrt{F(x)} dx + v_0$$

B.
$$\sqrt{2} \int_{\sqrt{x_0}}^{\sqrt{x_1}} F(x) dx + v_0$$

C.
$$\sqrt{\frac{2}{m}} \int_{x_0}^{x_1} F(x) dx + (v_0)^2$$

D.
$$\sqrt{\frac{2}{m}} \int_{x_0}^{x_1} [F(x) + (v_0)^2] dx$$

Section I continues

- 9. If a, b and c are real numbers such that $a^2 + b^2 + c^2 = 1$, then ab + bc + ca lies in the interval
 - A. $\left[-\frac{1}{2},1\right]$
 - B. $\left[\frac{1}{2}, 2\right]$
 - C. $\left[-1,\frac{1}{2}\right]$
 - D. [-1,2]
- **10** Grin could correctly write the value of

$$\binom{15}{0} + 3\binom{15}{1} + 5\binom{15}{2} + \dots + (2n+1)\binom{15}{n} + \dots + 31\binom{15}{15}.$$

What did he write down?

- A. 2¹⁵
 B. 2¹⁶
- C. 2¹⁹
- D. 2³¹

End of Section I

Section II

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your response should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet.

(a) Given $z = 1 - i$, find:		n $z = 1 - i$, find:	
	(i)	$Im\left(\frac{1}{z}\right)$	2
	(ii)	z^{10} in cartesian form	2
	(iii)	The two values for ω such that $\omega^2 = 3\bar{z} + i$.	3

(b) If 2 - 3i is a zero of the polynomial $z^3 + pz + q$ where p and q 3 are real, find the values of p and q.

(c) Find

$$\int \frac{x^2 + 1}{x^4 + x^2 + 1} dx$$

3

2

(d) Find

 $\int \frac{dx}{\sqrt{3+4x-4x^2}}$

End of Question 11

Question 12 (15 marks) Use the Question 12 Writing Booklet.

- (a) Use the substitution $t = tan \frac{\theta}{2}$ to find $\int \frac{tan \theta}{1 + \cos \theta} d\theta$
- (b) Consider the propositions

p: $2^n - 1$ is prime *q*: *n* is prime, $n \in Z^+$

(i) Give an indirect proof by contrapositive of the following proposition: **3**

3

3

2

2

If $2^n - 1$ is prime then *n* is prime

- (ii) Write down the converse of the proposition in (i) 1
- (iii) Is the converse of the proposition in (i) true? 1If yes, give a proof.If no, give reasons.

(c) (i) Find real numbers A, B and C such that

$$\frac{9}{(2x-1)(x+1)^2} = \frac{A}{2x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$

(ii) Hence, evaluate

$$\int_{1}^{2} \frac{9}{(2x-1)(x+1)^2} dx$$

(d) The complex number z is such that $|z - 1| \le 1$ and |z - 2| = 1. Find the maximum possible value of $|z|^2$.

End of Question 12

Question 13 (13 marks) Use the Question 13 Writing Booklet.

(a) Using principle of mathematical induction, prove that $\forall n > 5, n \in \mathcal{N}$,

$$n! < \left(\frac{n}{2}\right)^n$$

(i) $I_n = \int x^n e^{ax} dx$, where *a* is a constant. (b)

Prove that
$$I_n = \frac{x^n e^{ax}}{a} - \frac{n}{a} I_{n-1}$$
.

(ii) Hence, find the value of

$$\int_{0}^{1} x^{3} e^{2x} dx$$

Show that $x = r \cos(\omega t + \phi)$, where r, ω, ϕ are constants, is a solution of (c) (i) 1 $\frac{d^2x}{dt^2} = -\omega^2 x.$

A small naval target rises and falls with SHM of a period of 10 seconds. The height of the waves from the crest to the trough is 2 metres.

At a horizontal range of 2000 m, a gun is fired so that the target would be hit provided it remains stationary in its highest position. The horizontal component of velocity is $1000 ms^{-1}$.

(ii) Show that the target would be missed by a vertical height of 0.69 m.

End of Question 13

2

3

3

4

Question 14 (17 marks) Use the Question 14 Writing Booklet.

- (a) A vehicle of mass *m* kg moves in a straight line subject to a resistance $P + Qv^2$ Newtons, where *v* is the speed and *P* and *Q* are constants with Q > 0.
 - (i) Form an equation of motion for the acceleration of the vehicle. 1
 - (ii) Hence, show that if P = 0, the distance required to slow down from **3** the speed $\frac{3U}{2}$ to speed U is $\frac{m}{0} \ln\left(\frac{3}{2}\right)$.
 - (iii) Also show that if P > 0, the distance required to stop from speed U is given by **3**

$$D = \lambda \ln(1 + kU^2)$$

Where *k* and λ are constants.

(b) Let *A*, *B*, *C* and *D* represent four complex numbers z_1, z_2, z_3 and z_4 such that

$$|z_1| = |z_2| = |z_3| = |z_4| = 1$$
 and $z_1 + z_2 + z_3 + z_4 = 0$.

2

1

2

- (i) Prove that $|z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_4|^2 + |z_4 - z_1|^2 \ge 8$
- (ii) α . Using (i), or otherwise, prove that $|z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_4|^2 + |z_4 - z_1|^2 =$

$$2(|z_1|^2 + |z_2|^2 + |z_3|^2 + |z_4|^2)$$

if and only if $z_1 + z_3 = 0$ and $z_2 + z_4 = 0$.

 β . Draw an Argand diagram to illustrate this result, and explain its geometrical significance.

Question 14 continues

Question 14 (continued)

(iii) Consider two complex numbers *u* and *v* defined as |u| = |v| = 1 and $uv \neq -1$. ω is a complex number such that $\omega = \frac{u - v}{1 + uv}$,

Prove that $Re(\omega) = 0$.

(iv) If
$$|u| < 1$$
, $|v| < 1$ and $uv \neq -1$, and $\xi = \frac{u - v}{1 + \overline{u} v}$, prove that 3

$$|\xi| \ge \frac{||u| - |v||}{1 - |u||v|}$$

End of Question 14

Question 15 (15 marks) Use the Question 15 Writing Booklet.

(a) (i) Prove for every positive integer k,

$$\frac{1}{k^2} < \frac{1}{k - \frac{1}{2}} - \frac{1}{k + \frac{1}{2}}$$

(ii) Hence, deduce that if n is a positive integer, then

$$\sum_{k=1}^{n} \frac{1}{k^2} < 2$$

(b) The diagram below shows a plane inclined at an angle α to the horizontal. A body of weight *W* can be supported on this plane independently by either the force *P* that is acting parallel to the incline plane, or *Q* that is acting parallel to the horizontal plane.

By drawing free body diagrams in each case, Prove that

$$\frac{1}{P^2} - \frac{1}{Q^2} = \frac{1}{W^2}$$

(c) Find the shortest distance from the point P(1,2,0) to the line with parametric equation

$$x = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \lambda \in \mathcal{R}.$$

Question 15 continues

3

2

3

Question 15 (continued)

(d) In the diagram below, *OACB* is a trapezium, with *OA* and *OB* represented by vectors \overrightarrow{a} and \overrightarrow{b} respectively. The diagonals of the trapezium intersect at the point *P* as shown in the diagram.

(i) Show that the vector equation of the line *OC* is

$$\overrightarrow{r} = t(\overrightarrow{b} + \alpha \overrightarrow{a}), \qquad t, \alpha \in \mathcal{R}.$$

1

4

(ii) Prove by vector methods that the point of intersection of the diagonals of a trapezium lies on the line passing through the midpoints of the parallel sides.

End of Question 15

Question 16 (15 marks) Use the Question 16 Writing Booklet.

- (a) Prove that if a real number *c* satisfies a polynomial equation of the form $r_3x^3 + r_2x^2 + r_1x + r_0 = 0$, where, r_0, r_1, r_2 and r_3 are rational numbers, then *c* satisfies an equation of the form $n_3x^3 + n_2x^2 + n_1x + n_0 = 0$, where n_0, n_1, n_2 and n_3 are integers.
- (b) Consider the compound function

$$f(x(\theta)) = h + x(\theta) \tan\theta - \frac{g}{2v^2} (x(\theta))^2 \sec^2 \theta,$$

where g, h and v are constants and $0 < \theta < \frac{\pi}{2}$.

Using implicit differentiation or otherwise, Prove that the value of θ that maximises $x(\theta)$ can be given by

$$x_m = \frac{v^2}{g} \cot \theta_m$$

NOTE: θ_m is the angle that gives the maximum value x_m

(c) A projectile of unit mass launched from a tower of height *h* metres with velocity v m/s at an angle of θ .

The equations of motion of the particle are as shown below:

$$r = \begin{pmatrix} v \cos \theta t \\ h + v \sin \theta t - \frac{1}{2}gt^2 \end{pmatrix}$$

DO NOT PROVE THIS

(i) Show that, for a given launch velocity v and angle θ , the Cartesian equation of the trajectory of the particle is given by

$$y = P(x) = h + xtan\theta - \frac{gx^2}{2v^2}\sec^2\theta$$

Question 16 continues

4

		1	
		1	
	÷	2	

The diagram below shows the trajectory of the projectile launched at velocity v m/s for varying values of θ . The function $\phi(x)$ is the enveloping parabola that encloses all possible paths, including the highest and the longest.

(ii) For any given value of x within the range of the projectile and launch velocity v, show that the equation of the enveloping parabola is 3

$$y = h + \frac{v^2}{2g} - \frac{gx^2}{2v^2}$$

(HINT: you may set
$$u = \tan \theta$$
)

(iii) The projectile impacts on an inclined plane with equation y = mx at the point 2 x = c as shown in the diagram above.
Show that the x- coordinate of the point of intersection of the projectile and the inclined plane is given by

$$c = -\frac{mv^2}{g} \pm \frac{v^2}{g} \sqrt{m^2 + \frac{2gh}{v^2} + 1}$$

(iv) Hence, show that the optimal angle θ_m that gives the largest range is given by **3**

$$\theta_m = \cot^{-1}\left(-m + \sqrt{m^2 + \frac{2gh}{v^2} + 1}\right)$$

(You may refer to the result in (b).

End of Examination - 15 -

2021 Ext 2 Trial Marking scheme

No:	Sample Answer	Marking scheme	Feedback
1	A		
	$Ara z_{t} = \frac{\pi}{2}$ 1st quadrant		
	$\frac{1}{\pi}$		
	$Arg z_2 = \frac{\pi}{6}$ 1st quadrant		
	$Z_1 = \pi = \pi^0 \pi$		
	$Arg \frac{1}{z_2} = \frac{1}{4} - \frac{1}{6} = \frac{1}{12}$ Ist quadrant		
	Also, $Arg z_2 < Arg z_1$		
2	В		
	$F.v = 2+8+16\begin{pmatrix} 2\\ 4 \end{pmatrix} = 13\begin{pmatrix} 1\\ 2 \end{pmatrix}$		
	$\frac{1}{v \cdot v} v = \frac{1}{4 + 16 + 16} \begin{pmatrix} 4 \\ -4 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 2 \\ -2 \end{pmatrix}$		
3	C	Sum of squares of direction	
	$(1)^2 (1)^2 (1)^2$	cosines is 1.	
	$\left(\frac{-}{c}\right) + \left(\frac{-}{c}\right) + \left(\frac{-}{c}\right) = 1$		
	$\frac{3}{2}$ - 1 \rightarrow c^2 - 3 \rightarrow c - + $\sqrt{3}$		
_	$\frac{1}{c^2} = 1 \forall c = 3 \forall c = \underline{1} \forall s$		
4			
5	D		
	$z^n = \sqrt{2} e^{i\left(\frac{\pi}{4} + 2\pi k\right)} \qquad k \in \mathcal{Z}$		
	$\frac{1}{1} i(\frac{\pi}{2\pi k})$		
	$z = 2\overline{2n}e^{i(4n+n)}, k \in \mathbb{Z}$		
6	В		
	$F(t) = \int f(t-y)g(y)dy$		
	ŏ		

	$= \int_{0}^{t} fe^{t-y} y dy$ Let $t - y = p$ -dy = dp; Also, $y = 0$, $p = t$; $y = t$, $p = 0$ $\therefore F(t) = -\int_{1}^{0} (t-p)e^{p} dp$ $= \int_{0}^{1} t e^{p} dp - \int_{0}^{1} p e^{p} dp$ $= t[e^{p}]_{0}^{1} - [pe^{p}]_{0}^{1} + [e^{p}]_{0}^{1}$ $= [t(e^{t} - 1) - te^{1} + (e^{1} - 1)]$ $F(t) = e^{t} - (t + 1)$	
7	C	
7	Here $p: x \in \mathcal{R}$ and $q: x \ge 0$ $p \Leftrightarrow q$ is a biconditional statement. $\neg (p \Leftrightarrow q) = \neg (p \Rightarrow q \text{ and } q \Rightarrow p)$ $= \neg (p \Rightarrow q) \text{ or } \neg (q \Rightarrow p)$ $= (p \text{ and } \neg q) \text{ or } (q \text{ and } \neg p)$ Solution: $\{x \in \mathcal{R} \text{ and } x \ge 0\} \text{ or}$ $\{ x \ge 0 \text{ and } x \notin \mathcal{R}\}$	

0	C	
ō		
	mx = r(x)	
	$\ddot{x} = \frac{F(x)}{x}$	
	m_{1}	
	$v \frac{dv}{dt} = -F(x)$	
	dx m	
	$v dv = \frac{1}{m}$ $F(x) dx$	
	J_{v_0} $m J_{x_0}$	
	$\frac{1}{2}((v_1)^2 - (v_0)^2) = \frac{1}{2}\int_{-\infty}^{\infty} F(x) dx$	
	$2 \sim m J_{x_0}$	
	$(n_{r})^{2} = \frac{2}{r} \int_{-\infty}^{x_{1}} F(x) dx + (n_{r})^{2}$	
	$m \int_{x_0} r(x) dx + (v_0)$	
	$2 c^{x_1}$	
	$v_1 = \left \frac{2}{m} \right F(x) dx + (v_0)^2$	
	$\sqrt{m} J_{\chi_0}$	
9.	A	
	Let $ab + bc + ca = k$	
	Now, $(a + b + c)^2 = a^2 + b^2 + c^2 + 2k$	
	$(a+b+c)^2 \ge 0$ perfect square	
	$1 + 2k > 0 \implies k > -\frac{1}{2}$	
	$1 + 2k \ge 0 \implies k \ge -\frac{1}{2}$	
	Consider $(a - b)^2 + (b - c)^2 + (c - a)^2 \ge 0$	
	$2[a^2 + b^2 + c^2 - ab - bc - ca] \ge 0$	
	$1-k \ge 0 \rightarrow k \le 1$	
	$\begin{bmatrix} -\frac{1}{2} \end{bmatrix}$	
10	<u> </u>	
10		
	$I = {\binom{15}{0}} + 3 {\binom{15}{1}} + 5 {\binom{15}{2}} + \dots + (2n+1) {\binom{15}{n}} + \dots + 31 {\binom{15}{15}}.$	
	$I = 31 {\binom{15}{1}} + 29 {\binom{15}{1}} + 27 {\binom{15}{1}} + \dots + (31 - 2n) {\binom{15}{1}} + \dots + {\binom{15}{1}}$	
	Lis the same as L but the terms are arranged in the reverse order as	
	$\binom{n}{n} = \binom{n}{n}$	
	(r) = (n - r).	
	Hence, $\begin{pmatrix} 13\\0 \end{pmatrix} = \begin{pmatrix} 13\\15 \end{pmatrix}; \begin{pmatrix} 13\\1 \end{pmatrix} = \begin{pmatrix} 13\\14 \end{pmatrix} \dots \dots$	

$I + J = 32 \left[\binom{15}{0} + \binom{15}{1} + \binom{15}{2} + \dots + \binom{15}{n} + \dots + \binom{15}{15} \right].$ $2I = 32 \times 2^{15} = 2^{18}$	

Οı	jestion	11
Q.		_

a)(i)	z = 1 - i	1 mark: multiplies by
	1 1 1+i	the conjugate
	$\frac{1}{z} = \frac{1}{1-i} = \frac{1}{2}$	
	$Im\left(\frac{1}{2}\right) = \frac{1}{2}$	1 mark: gives the
	(z) 2	imaginary component
a(ii)	(i\pi) ¹⁰	1 mark: expresses z ¹⁰
α()	$z^{10} = (\sqrt{2}e^{-4})$	in component form of
	$\frac{10\pi}{\pi}$ $\frac{\pi}{\pi}$	exponential form.
	$= 32 e 4 = 32 e^2 = -32i$	1 mark: correctly
		evaluates and gives
		the answer in
		Cartesian form.
a(iii)	$\omega^2 = 3\bar{z} + i = 3(1+i) + i$	
	$\omega^2 = 3 + 4i = (a + ib)^2$	3 marks: Correct
	$a^2 - b^2 = 3$	answer from correct
	$a^{2} + b^{2} = \sqrt{(a^{2} - b^{2})^{2} + (2ab)^{2}}$	working
	$a^2 + b^2 = \sqrt{3^2 + 4^2} = 5$	
	$u + b = \sqrt{3} + 4 = 3$ Hence $2a^2 = 8 \rightarrow a = +2$	2 marks: Equates the
	Hence, $2h^2 = 2 \rightarrow h = \pm 1$	real and imaginary
		parts and writes the
	Thus $\omega^2 = \sqrt{(2+i)^2} = \pm (2+i)$	relationship
	$1 \pi u_3 \omega = \sqrt{(2+i)} = \pm (2+i)$	attempting to find a
		and b, writes the
		squareroot from their
		a and b
		1 mark: Equates the
		real and imaginary
		parts, but equations
		or method incorrect
(d		
	$Z^{*} + pZ + q = 0$	1 mark: substitutes
	2 - 5i is d foot	into the polynomial

	$(2-3i)^{3} + (2-3i)p + q = 0 1 \text{ mark}$ 8 - 36i - 54 + 27i + (2 - 3i)p + q = 0 -46 - 9i + 2p + q - 3ip = 0 2p + q = 46 3p = -9; 1 mark p = -3 $\therefore q = 46 - 2 \times -3 = 52 1 \text{ mark}$ Or Let the roots be $\alpha, \overline{\alpha}, \beta$ Sum of roots is zero. $(2 - 3i) + (2 + 3i) + \beta = 0$ $\therefore \beta = -4$ Product of roots = $(2 - 3i)(2 + 3i)(-4) = -q$ $\therefore q = 52$ p = (2 - 3i)(-4) + (2 + 3i)(-4) + (2 - 3i)(2 + 3i) = -3	1 mark: equates the real and imaginary parts 1 mark: solves for p and q correctly	
c)	$\int \frac{x^{2} + 1}{x^{4} + x^{2} + 1} dx$ $\int \frac{1 + \frac{1}{x^{2}}}{x^{2} + 1 + \frac{1}{x^{2}}} dx$ $let \ u = x - \frac{1}{x}$ $du = 1 + \frac{1}{x^{2}} dx (give \ 1 \ mark \ here)$ $\int \frac{1 + \frac{1}{x^{2}}}{x^{2} + 1 + \frac{1}{x^{2}}} dx = \int \frac{1 + \frac{1}{x^{2}}}{\left(x - \frac{1}{x}\right)^{2} + 3} dx 2 \ mark$	2 mark: reorganises the integrand, chooses the correct substitution, expresses dx and the integrand into an integrable form 1 mark: minor error or significant progress with relevant working	

	$\int \frac{du}{u^2 + 3} = \frac{1}{\sqrt{3}} \tan^{-1} \frac{u}{\sqrt{3}} + C$ $\frac{1}{\sqrt{3}} \tan^{-1} \frac{x - \frac{1}{x}}{\sqrt{3}} + C$ $\frac{1}{\sqrt{3}} \tan^{-1} \frac{x^2 - 1}{\sqrt{3}x} + C$	1 mark: correctly integrates and expresses the solution in terms of <i>x</i>	
d)	$\int \frac{dx}{\sqrt{3 + 4x - 4x^2}} =$ Since, $3 + 4x - 4x^2 = 4\left(\frac{3}{4} + x - x^2\right)$ $4\left(1 - \left(x - \frac{1}{2}\right)^2\right)$	1 mark: completes the square and expresses the integrand in the $\frac{dx}{\sqrt{1-(x-\frac{1}{2})^2}}$ form 1 mark: correctly	
	$\int \frac{dx}{\sqrt{4\left(1-\left(x-\frac{1}{2}\right)^2\right)}} = \frac{1}{2} \int \frac{dx}{\sqrt{1-\left(x-\frac{1}{2}\right)^2}}$ Let $u = x - \frac{1}{2}$ du = dx	integrates and expresses the answer in terms of x.	
	$\frac{1}{2} \int \frac{du}{\sqrt{1-u^2}} = \frac{1}{2} \sin^{-1} u = \frac{1}{2} \sin^{-1} \left(x - \frac{1}{2}\right) + C$ $\frac{1}{2} \sin^{-1} \left(\frac{2x - 1}{2}\right) + C$		

a)	Let $t = \tan \frac{\theta}{\theta}$ then		
	2^{\prime}	3 mark: correct solution	
	$2t$ $1-t^2$ $d\theta$ 2	showing all working	
	$tan\theta = \frac{1}{1-t^2}, cos\theta = \frac{1}{1+t^2} and \frac{1}{dt} = \frac{1}{1+t^2}$	5 5	
		2 mark: correctly converts	
	$(\tan \theta) = (2t)(1-t^2)^2$	the integrand but error in	
	$\int \frac{ddr \theta}{dt} d\theta = \int \frac{dt}{dt} \div \left(1 + \frac{1-t}{dt+t^2}\right) \times \frac{dt}{dt+t^2} dt$	the integrand, but error in	
	$\int 1 + \cos \theta = \int 1 - t^2 = (1 + t^2) = 1 + t^2$	simplification or integration	
	$=\left(\frac{2t}{1-t}\times\left(\frac{1+t^2}{t}\right)\times\frac{2}{t-t^2}\right)dt$	1 marks correct conversion	
	$\int 1-t^2 \left(\begin{array}{c} 2 \end{array} \right) 1+t^2$	I mark: correct conversion	
	$\int 2t$	of integrand	
	$=\int \frac{1}{1-t^2} dt$	Or correct integration of	
	$= -\ln 1 - t^2 + C$	the integrand in t.	
	$\ln \left 1 - \tan^2 \frac{\theta}{2} \right + C$		
b)(i)	<i>p</i> : $2^n - 1$ is prime <i>q</i> : <i>n</i> is prime		
		* writes the contrapositive	
	We need to prove $n \Longrightarrow a$	statement correctly	
	We have $n \rightarrow a \equiv -a \rightarrow -n$	* $avprocesor 2^a = 1$ with place	
	we have $p \rightarrow q = \neg q \rightarrow \neg p$	expresses 2 – 1 with thas	
		a composite number	
	We'll prove the contrapositive statement $\neg q \Rightarrow \neg p$	*clearly states , $b \in$	
		\mathcal{Z}^+ : $n = ab$, $a \neq 1$, $b \neq 1$.	
	Proof:	*expresses $2^n - 1$ in	
	$\neg q$: <i>n</i> is composite. 1 mark	factored form	
	* * *	* Clearly explains $2^a - 1 \neq$	
	Then $\exists a, b \in \mathbb{Z}^+$: $n = ab$, $a \neq 1$, $b \neq 1$.	1	
	Hence,	*States $2^{a} - 1 \neq 2^{ab} - 1$	
	$2^{ab} - 1 = (2^a)^b - 1$	since $h \neq 1$	
	$= (2^{a} - 1)(2^{a(b-1)} + 2^{a(b-2)} + 2^{a(b-3)} + \dots + 1)$		
	Where $2^a - 1 \neq 1$, since $a \neq 1$ and		

	$2^a - 1 \neq 2^{ab} - 1 \text{ since } b \neq 1$	*states the contrapositive
	So, $2^n - 1$ is composite, $\neg p$ is true.	statement and hence the
	We have proved $\neg q \Rightarrow \neg p$	given proposition is true.
	Hence, $p \implies q$ is true.	
		3 marks: All 7 components
		are clearly demonstrates
		2 mark: at least five
		1 mark: at least 3
b(ii)	The converse of $p \Longrightarrow q$ is $q \Longrightarrow p$.	1 mark:
	If <i>n</i> is prime, then $2^n - 1$ is prime.	
1 ()		
b(III)	The converse is false.	1 mark: reasons correctly
	Let $n = 11$,	
\/:\	$2^{11} - 1 = 23 \times 89$ is composite, thus disproving $q \Rightarrow p$	
C)(I)	$\frac{9}{(2-1)^2} = \frac{A}{2-1} + \frac{B}{2-1} + \frac{C}{2-1}$	
	$(2x-1)(x+1)^2$ $2x-1$ $x+1$ $(x+1)^2$	3 marks: All pronumerals
	$9 = A(x + 1)^{2} + B(2x - 1)(x + 1) + C(2x - 1)$	are calculated correctly
	$\begin{array}{ccc} x = -1, & 9 = -3c \implies c = -3 \\ 1 & 0 \end{array}$	showing all working
	$x = \frac{1}{2}, \qquad 9 = \frac{3}{4}A \implies A = 4$	2 marks: two of the
	Compare constants	pronumerals are calculated
	$9 = A - B - C \implies B = -2$	correctly showing all
		working
	9 4 2 3	1 marks A valid mathed in
	$\frac{1}{(2x-1)(x+1)^2} = \frac{1}{2x-1} - \frac{1}{x+1} - \frac{1}{(x+1)^2}$	I mark: A valid method is
		used to evaluate the
	Or	CONSTANTS.
	1 9	
	$x = \frac{1}{2}, A = \frac{1}{(3)^2} = 4$	
	$\left(\frac{\overline{2}}{2}\right)$	
	$r = -1$ $C = -\frac{9}{-3} = -3$	
	$x = -1, c = \frac{1}{2(-1)-1} = -3$	

c)(ii)	Let $x = 0$, then $\frac{9}{-1 \times -1} = \frac{4}{-1} + B - 3$ $\therefore B = -2$ $\int_{1}^{2} \frac{9}{(2x-1)(x+1)^{2}} dx =$ $\int_{1}^{2} \frac{4}{2x-1} - \frac{2}{x+1} - \frac{3}{(x+1)^{2}} dx$ $\left[2\ln 2x-1 - 2\ln x+1 - \frac{3(x+1)^{-1}}{-1}\right]_{1}^{2}$ $= \left[2\ln\left \frac{2x-1}{x+1}\right + \frac{3}{x+1}\right]_{1}^{2}$ $= 2\ln\left \frac{1}{\frac{1}{2}}\right + 3\left(\frac{1}{3} - \frac{1}{2}\right)$ $= 2\ln2 - \frac{1}{2} \text{or} \ln 4 - \frac{1}{2}$	1 mark: correctly integrates 1 mark: correct evaluation (must give the answer in the simplest form	
d)	$ z-1 \le 1$ and $ z-2 = 1$. $ z-1 \le 1$ is the circle and the interior of circle with centre (1, 0) and radius 1. z-2 = 1 circle with centre (2,0) and radius 1. Both these conditions are satisfied by arc DAC.	2 marks: Correct answer from correct working. 1 mark: Minor error or explains arc DAC satisfies the two conditions	

 $p(n): n! < \left(\frac{n}{2}\right)^n, n > 5. n \in \mathcal{N}$ a) Step 1: n = 6 $6! < \left(\frac{6}{2}\right)^6 \implies 6! < 3^6 \implies 720 < 729$ 1 mark: Proves the basic result True $\therefore p(6)$ is true. 1 mark Step 2 1 mark: writes the p(k) and Suppose p(k) is true. p(k+1) statements and $p(k): k! < \left(\frac{k}{2}\right)^k$, k > 5 (1) demonstrates the basic manipulation Proving p(k+1) is true. Multiplying (1) by (k+1) $p(k+1): k!(k+1) < \left(\frac{k}{2}\right)^k (k+1)$ 2 mark: proves $\left(1+\frac{1}{\nu}\right)^k > 2$ and proves p(k+1) is true and $(k+1)! < \frac{k^k}{2^k}(k+1)$ gives a concluding statement $(k+1)! < \frac{k^k(k+1) \times 2}{2^k \times 2}$ (2) 1 mark 1 mark: attempts and reasonable manipulation to Consider $\left(1+\frac{1}{k}\right)^k$ prove the inequality and gives a concluding statement $\left(1+\frac{1}{k}\right)^{k} = 1+k\left(\frac{1}{k}\right)+\binom{k}{2}\left(\frac{1}{k}\right)^{2}+\cdots$ Hence, $(1 + \frac{1}{\nu})^k > 2$ Hence, from (2) $(k+1)! < \frac{k^k(k+1) \times 2}{2^k \times 2} < \frac{k^k(k+1)}{2^{k+1}} \left(1 + \frac{1}{k}\right)^k$

	$\therefore (k+1)! < \frac{k^{k}(k+1)}{2^{k+1}} \times \frac{(k+1)^{k}}{k^{k}}$		
	$\therefore (k+1)! < \frac{(k+1)^{k+1}}{2^{k+1}}$		
	Hence, p(k+1) is true.		
	Thus p(k) is true $\Rightarrow p(k+1)$ is true for $\forall k > 5, k \in \mathcal{N}$		
	∴ by principle of mathematical induction,		
	$p(n)$ is true for $\forall n > 5$, $n \in \mathcal{N}$		
(b)(i)	$I_n = \int x^n e^{ax} dx$		
		1 mark: gives the correct	
	Let $u = x^n$, $u' = nx^{n-1}$	expressions for u, u', v, v' or	
		significant progress towards	
	e^{ax}	solution	
	$v' = e^{ax}$ $v = \frac{b}{a}$		
	$x^n \dots n$ c x^n	1 mark: gives correct steps to	
	$I_n = \frac{1}{a} e^{ax} - \frac{1}{a} \int x^{n-1} e^{ax} dx$	conclusion	
	x^n x^n n		
	$I_n = \frac{-a}{a}e^{ax} - \frac{-a}{a}I_{n-1}$ as required.		
b(ii)	1		
	$I_3 = x^3 e^{2x} dx$	1 mark: some progress	
	5 J	towards solution. Eg. One	
	0	correct step say from I_2 to I_2 .	
	$[r^3]^1$ 3 e^2 3	3 5 2	
	$I_3 = \left \frac{x}{2} e^{2x} \right - \frac{3}{2} I_2 = \frac{c}{2} - \frac{3}{2} I_2$	1 mark: gives correct	
		expression for I_{0}	
	$x = \begin{bmatrix} x^2 \\ x^2 \end{bmatrix}^1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} e^2 \\ e^2 \end{bmatrix}$		
	$I_2 = \left[\frac{1}{2}e^{-it}\right]_1 - \frac{1}{2}I_1 = \frac{1}{2} - I_1$	1 mark: gives correct	
	$r_{x} r_{1}^{1} 1 e^{2} 1$	solution	
	$I_1 = \left[\frac{\pi}{2}e^{2x}\right]_0 - \frac{\pi}{2}I_0 = \frac{\sigma}{2} - \frac{\pi}{2}I_0$		
	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		
	$I_0 = \left[e^{2x} dx = \left \frac{1}{2} e^{2x} \right = \frac{e}{2} - \frac{1}{2} \right]$		
	J $[2]$ J_0 Z Z		

	$I_{1} = \frac{e^{2}}{2} - \frac{1}{2} \left(\frac{e^{2}}{2} - \frac{1}{2} \right) = \frac{e^{2}}{2} - \frac{e^{2}}{4} + \frac{1}{4} = \frac{e^{2}}{4} + \frac{1}{4}$ $I_{2} = \frac{e^{2}}{2} - \frac{1}{2} \left(\frac{e^{2}}{2} - \frac{1}{2} \right) = \frac{e^{2}}{2} - \left(\frac{e^{2}}{4} + \frac{1}{4} \right) = \frac{e^{2}}{4} - \frac{1}{4}$ $I_{3} = \frac{e^{2}}{2} - \frac{3}{2} I_{2} = \frac{e^{2}}{2} - \frac{3}{2} \left(\frac{e^{2}}{4} - \frac{1}{4} \right) = \frac{e^{2}}{8} + \frac{3}{8}$		
(c)(i)	$x = r \cos(\omega t + \phi)$ $\dot{x} = -r\omega \sin(\omega t + \phi)$ $\ddot{x} = -r\omega^{2} \sin(\omega t + \phi)$ $\ddot{x} = -\omega^{2} x$ I.e. $r \cos(\omega t + \phi)$ satisfies the equation $\ddot{x} = -\omega^{2} x$.	1 mark: proves the result with all lines of working	
C(ii)	Crest to trough is 2m \therefore amplitude $a = 1 m$ We are considering the naval vessel while it is on the crest and the bullet will hit it provided it stayed stationary. $\int_{-1}^{1} \int_{-1}^{1} \int_{-1$	1 mark: calculates the time taken for a distance of 2000m. $t = 2$ 2 marks: calculates <i>a</i> , <i>n</i> and α and writes the equation of motion of the boat. 1 mark: minor error in calculating <i>a</i> , <i>n</i> and α and writes the equation of motion of the boat.	

14(a) (i)	$-(p+Qv^{2}) \iff m\ddot{x}$ $m\ddot{x} = -(P+Qv^{2})$ $\ddot{x} = -\frac{1}{m}(P+Qv^{2})$	1 mark: correct free body diagram, equation of motion and derives for \ddot{x}
(ii)	$\ddot{x} = -\frac{1}{m}(P + Qv^2)$	1 mark: expresses $\ddot{x} = v \frac{dv}{dx}$ and writes the equation
	If $P = 0$, $\ddot{x} = -\frac{Q}{m}v^2$	1 mark: separates the differential equation into variable separable form
	$\ddot{x} = -\frac{q}{m}v^2$	1 mark: Integrates, evaluates and simplifies
	$\ddot{x} = -\frac{Q}{m}v^{2}$ $v\frac{dv}{dx} = -\frac{Q}{m}v^{2}$ Hence, $\frac{dx}{dv} = -\frac{m}{Qv}$ when $x = 0, v = \frac{3U}{2}$ and when $x = D, v = U$ Hence, $\int_{0}^{D} dx = -\frac{m}{Q}\int_{\frac{3U}{2}}^{U} \frac{1}{v} dv$ $D = -\frac{m}{Q}\ln\left \frac{U}{\frac{3U}{2}}\right $ $D = -\frac{m}{Q}\ln\left \frac{2}{3}\right = \frac{m}{Q}\ln\left \frac{3}{2}\right $	

(iii)	If $P > 0$, then $\frac{dv}{dx} = -\left(\frac{P+Qv^2}{mv}\right)$		
	Hence, $\frac{dx}{dv} = -\frac{mv}{P+Qv^2}$	1 mark: gives the correct differential equation	
	and $V = 0$, when, say $x = D$	1 mark: Integrates the differential equation correctly	
	$\frac{dx}{dv} = -\frac{mv}{P+Qv^2} \qquad 1 mark$ $\int_{0}^{D} dx = \int_{0}^{0} -\frac{mv}{P+Qv^2} dv$	1 mark: correctly simplifies to give the values of λ and k .	
	$D = -\frac{m}{2Q} \int_{U}^{0} \frac{2Qv}{P + Qv^2} dv$		
	$D = -\frac{m}{2Q} [\ln P + Qv^2]_U^0 = -\frac{m}{2Q} \ln\left \frac{P}{P + QU^2}\right 1 mark$		
	$= \frac{m}{2Q} \ln \left \frac{P + QU^2}{P} \right $ $= \frac{m}{2Q} \ln \left 1 + \frac{Q}{P} U^2 \right \equiv \lambda \ln(1 + kU^2)$		
	Hence, $\lambda = \frac{m}{2Q}$ and $k = \frac{Q}{P}$ 1 mark		
14	Wakaaw		
(b)(i)	$ z_1 - z_2 ^2 = (z_1 - z_2)(\overline{z_1 - z_2})$ = $(z_1 - z_2)(\overline{z_1} - \overline{z_2})$ = $z_1\overline{z_1} - z_1\overline{z_2} - z_2\overline{z_1} + z_2\overline{z_2} = z_1 ^2 + z_2 ^2 - z_1\overline{z_2} - z_2\overline{z_1}$ Let $E = z_1 - z_2 ^2 + z_2 - z_3 ^2 + z_3 - z_4 ^2 + z_4 - z_1 ^2$	2 marks: Correct proof and reasoning 1 mark: expresses $ z ^2 as z\overline{z}$ and uses	

	$\begin{split} E &= 2(z_1 ^2 + z_2 ^2 + z_3 ^2 + z_4 ^2) - \bar{z_1}(z_2 + z_4) - \\ &= \bar{z_2}(z_1 + z_3) - \bar{z_3}(z_2 + z_4) - \bar{z_4}(z_1 + z_3) \\ &= 2(z_1 ^2 + z_2 ^2 + z_3 ^2 + z_4 ^2) - (z_2 + z_4)(\bar{z_1} + \bar{z_3}) \\ &- (z_1 + z_3)(\bar{z_2} + \bar{z_4}) \\ &\text{However, } z_2 + z_4 = -(z_1 + z_3) \text{ as } z_1 + z_2 + z_3 + z_4 = 0. \\ &= 2(z_1 ^2 + z_2 ^2 + z_3 ^2 + z_4 ^2) + (z_1 + z_3)(\bar{z_1} + \bar{z_3}) \\ &+ (z_2 + z_4)(\bar{z_2} + \bar{z_4}) \\ &\text{Hence,} \\ & z_1 - z_2 ^2 + z_2 - z_3 ^2 + z_3 - z_4 ^2 + z_4 - z_1 ^2 = \\ &= 2(z_1 ^2 + z_2 ^2 + z_3 ^2 + z_4 ^2) + z_1 + z_3 ^2 + z_2 + z_4 ^2 \\ &\text{(statement 1)} \\ &= 2 \times 4 + z_1 + z_3 ^2 + z_2 + z_4 ^2 \\ &\text{Hence,} \\ & z_1 - z_2 ^2 + z_2 - z_3 ^2 + z_3 - z_4 ^2 + z_4 - z_1 ^2 \ge 8 \end{split}$	$ z_1 = z_2 = z_3 = z_4 = 1$	
b(ii) α	From (i), using statement 1, $E - 2(z_1 ^2 + z_2 ^2 + z_3 ^2 + z_4 ^2)$ $= z_1 + z_3 ^2 + z_2 + z_4 ^2 = 0$ $\Leftrightarrow z_1 + z_3 = 0$ and $z_2 + z_4 = 0$.	1 mark: proves the result	
β	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} $ The sum of squares of the side lengths of a rectangle with vertices of the form z \\ \end{array} \\ = \pm a \pm bi equals 8	1 mark: for correct diagram 1 mark: for the geometrical reasoning	
(iii)	$\omega + \overline{\omega} = 2 \operatorname{Re}(\omega)$ $\omega + \overline{\omega} = \frac{u - v}{1 + uv} + \overline{\left(\frac{u - v}{1 + uv}\right)}$ $= \frac{u - v}{1 + uv} + \frac{\overline{u} - \overline{v}}{1 + \overline{u}\overline{v}}$	2 mark: correct solution from correct working 1 mark: explains $\omega + \overline{\omega} = 2 Re(\omega)$ and attempts to simplify the expression	

	We expand and simplify:		
	$= \frac{u-v}{1+uv} + \frac{\overline{u}-\overline{v}}{1+\overline{u}\overline{v}}$ $= \frac{u-v+u\overline{u}\overline{v}-\overline{u}v\overline{v}+\overline{u}-\overline{v}+u\overline{u}v-uv\overline{v}}{(1+uv)(1-\overline{u}\overline{v})}$ $u\overline{u} = 1 \text{ and } v\overline{v} = 1$ $\therefore \frac{u-v+u\overline{u}\overline{v}-\overline{u}v\overline{v}+\overline{u}-\overline{v}+u\overline{u}v-uv\overline{v}}{(1+uv)(1-\overline{u}\overline{v})} = 0$ $= \frac{u-v}{1+uv} + \frac{v-u}{1+uv} = 0$ $ie. 2 \operatorname{Re}(\omega) = 0$		
	$\therefore Re(\omega) = 0$		
(iv)	Let $u = r_1 e^{i\theta}$ and $v = r_2 e^{i\alpha}$, where $r_1 < 1, r_2 < 1$ $1 - \bar{u}v = 1 - r_1 r_2 e^{i(\alpha - \theta)}$ $ 1 - \bar{u}v ^2 = (1 - r_1 r_2 \cos(\alpha - \theta))^2 + (r_1 r_2)^2 \sin^2(\alpha - \theta)$ $= 1 - 2r_1 r_2 \cos(\alpha - \theta) + r_1^2 r_2^2$ $\leq (1 - r_1 r_2)^2$ as $-1 \leq \cos(\alpha - \theta) \leq 1$ $= (1 - u v)^2$ That is $ 1 - \bar{u}v ^2 \leq (1 - u v)^2$ Hence, $ 1 - \bar{u}v \leq 1 - u v $ $\frac{1}{1 - u v } \leq \frac{1}{ 1 - \bar{u}v }$ (1) 1 mark (result 1) Also, using triangular inequalities, $ u - v \leq u - v $ (2) 1 mark and conclusion From (1) and (2), $\frac{ u - v }{1 - u v } \leq \frac{u - v}{1 + \bar{u}v} $	1 mark: expresses u and v correctly and writes an expression for 1 - ūv ² 1 mark: proves the inequality result 1 1 mark: Uses triangular inequality and proves the result	

	Using Lami's theorem,		
	$\frac{P}{\sin(180 - \alpha)} = \frac{W}{\sin 90} = \frac{R}{\sin(90 + \alpha)}$ Hence, $P = W \sin \alpha$ R	1 mark: Draws the free body diagram, writes the force equations	
	$\begin{array}{c} A_{90} + \alpha \\ g_{0} + \alpha \\ g_{0} - \alpha \\ W \end{array} \qquad \qquad$		
	$\frac{Q}{\sin(180 - \alpha)} = \frac{W}{\sin(90 + \alpha)} = \frac{R}{\sin 90}$ Hence, $Q = W \tan \alpha$		
	$\frac{1}{P^2} - \frac{1}{Q^2} = \frac{1}{W^2} (cosec^2\alpha - \cot^2\alpha)$		
	$\frac{1}{P^2} - \frac{1}{Q^2} = \frac{1}{W^2}$		
c)	Let A be the point $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $P \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$	1 mark: calculates \overrightarrow{AP} ,	
	$\overrightarrow{AP} = \begin{pmatrix} 1\\2\\0\\1 \end{pmatrix} - \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\2\\-1 \end{pmatrix}$	<i>AP</i> . <i>v</i> correctly 1 mark: correctly calculates the <i>Proj</i> _{<i>v</i>} \overrightarrow{AP}	
	$\overset{v}{\sim} = \begin{pmatrix} 1\\1 \end{pmatrix}$	1 mark: calculates the shortest distance	

	Method 2 $A\begin{pmatrix} 0\\1\\1 \end{pmatrix}, J\begin{pmatrix} 1\\\lambda\\1+\lambda \end{pmatrix} \overrightarrow{PJ} = \begin{pmatrix} 1-1\\\lambda-2\\1+\lambda-0 \end{pmatrix} = \begin{pmatrix} 0\\\lambda-2\\1+\lambda \end{pmatrix} \begin{pmatrix} 0\\\lambda-2\\1+\lambda \end{pmatrix} \begin{pmatrix} 0\\1\\1 \end{pmatrix} = 0. \text{ (perpendicular)}$ $\lambda = \frac{1}{2}$ $\therefore \overrightarrow{PJ} = \begin{pmatrix} 0\\-3/2\\3/2 \end{pmatrix}$ $ \overrightarrow{PJ} = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{3}{2}\right)^2} = \frac{3}{\sqrt{2}}$		
d) (i)	$M = \frac{1}{2} \alpha \vec{a}$ $M = \alpha \vec{a}$	1 mark: Explains that $\overrightarrow{BC} = \alpha \ \overrightarrow{OA}$ and writes the vector representations for OC	

$=\frac{1}{2}\overrightarrow{a}+k(\overrightarrow{b}+\frac{1}{2}(\alpha-1)\overrightarrow{a}) 1 \operatorname{mark}$	
Note: Comparing r_3 and r_4 , we note that the coefficient \vec{b} is $\frac{1}{\alpha+1}$ Hence, k must be $\frac{1}{\alpha+1}$	
$r_4 = \frac{1}{2}\overrightarrow{a} + \frac{1}{\alpha+1} (\overrightarrow{b} + \frac{1}{2}(\alpha-1)\overrightarrow{a})$ $= \frac{1}{\alpha+1}\overrightarrow{b} + \frac{\alpha-1}{2(\alpha+1)} \overrightarrow{a} + \frac{1}{2}\overrightarrow{a}$	
$= \frac{1}{\alpha + 1}\vec{b} + \frac{1}{2(\alpha + 1)}(\alpha - 1 + \alpha + 1)\vec{a}$	
$=\frac{1}{\alpha+1}\left(\vec{b}+\alpha \ \vec{a}\right)$ which is the position vector of P.	
That is P lies on MN 1 Mark	

a)	Suppose c is a real number such that		
	$r_3x^3 + r_2x^2 + r_1x + r_0 = 0$ where, r_0, r_1, r_2 and r_3 are rational		
	numbers.	1 mark: expresses r_0, r_1, r_2	
	By the definition of rational,	and r_3 as rational numbers	
	$r_0 = \frac{a_0}{b_0}$, $r_1 = \frac{a_1}{b_1}$, $r_2 = \frac{a_2}{b_2}$ and $r_3 = \frac{a_3}{b_2}$ for some integers		
	1 mark	1. secolar selection and she	
	a_0, a_1, a_2 and $a_3 \in \mathcal{N}$ and non-zero integers b_0, b_1, b_2 and	1 mark: clearly explains	
	$b_3 \in \mathcal{Z}^+$.	and denominator of the	
	1 mark	rational coefficients.	
	By substitution,	2 marks: correct proof	
	$r_3c^3 + r_2c^2 + r_1c + r_0$		
	$=\frac{a_3}{b}c^3 + \frac{a_2}{b}c^2 + \frac{a_1}{b}c + \frac{a_0}{b}$	• Clear reasoning	
	D_3 D_2 D_1 D_0	• Clearly demonstrates	
	$a_2b_2b_1b_0$, $a_2b_2b_1b_0$, $a_1b_2b_2b_0$, $a_0b_2b_2b_1$	how the integer	
	$=\frac{a_{3}^{2}c_{2}^{2}a_{1}^{2}b_{0}}{b_{0}b_{0}b_{0}b_{0}}c^{3}+\frac{a_{2}^{2}c_{3}^{2}a_{1}^{2}b_{0}}{b_{0}b_{0}b_{0}}c^{2}+\frac{a_{1}^{2}c_{3}^{2}c_{2}^{2}b_{0}}{b_{0}b_{0}b_{0}b_{0}}c+\frac{a_{0}^{2}c_{3}^{2}c_{2}^{2}a_{1}}{b_{0}b_{0}b_{0}b_{0}}b_{0}$	coefficients are derived	
	$b_3 b_2 b_1 b_0 \neq 0$, by definition. 1 mark		
	Multiplying by $b_3b_2b_1b_0$ gives		
		1 mark: attempts to prove	
	$a_3b_2b_1b_0 \cdot c^3 + a_2b_3b_1b_0 \cdot c^2 + a_1b_3b_2b_0 \cdot c + a_0b_3b_2b_1 = 0$	that the coefficients are	
		integers, however, gives	
	Let $n_3 = a_3 b_2 b_1 b_0$, $n_2 = a_2 b_3 b_1 b_0$, $n_1 = a_1 b_3 b_2 b_0$ and	clear reasoning for each	
	$n_0 = a_0 b_3 b_2 b_1$ where n_3, n_2, n_1 and n_0 are all integers, being	assertion.	
	product of integers.		
	The second of the second se		
	inus, c satisfies a polynomial with integer coefficients.		
(b)	$a(\gamma(\theta))^2$		
	$P(x(\theta)) = h + x(\theta) \tan\theta - \frac{g(x(\theta))}{2m^2} \sec^2\theta$		
	<i>L V</i>		

	We are looking for the maximum value of $x(\theta)$,	1 mark: differentiates the	
	hence $x'(\theta) = 0$	compound function	
	$P'(x(\theta)).x'(\theta) =$		
	$x(\theta) \sec^2 \theta + x'(\theta) \tan \theta$	$1 \operatorname{marku}_{coto} \frac{\omega'(0)}{\omega} = 0$	
	$-\frac{g}{2x^2}[(x(\theta))^2 \times 2sec\theta.sec\theta tan\theta + 2x(\theta)x'(\theta)sec^2\theta]$	and solves for $x(\theta) = 0$	
	202	prove the result	
	Put $x'(\theta) = 0$		
	$0 = x(\theta) \sec^2 \theta - \frac{g}{2v^2} (x(\theta))^2 \sec^2 \theta \tan\theta$		
	$\theta \neq \frac{\pi}{2}, \ x(\theta) \neq 0$		
	Hence,		
	$x(\theta) \sec^2 \theta = \frac{g}{v^2} (x(\theta))^2 2 \sec^2 \theta \tan \theta$		
	$\frac{g}{2v^2}x(\theta)\tan\theta = 1$		
	$x(\theta) = \frac{v^2}{c} \cot\theta$		
	y The given function is a concave down quadratic in $x(\theta)$		
	Hence, $x(\theta)$ will be maximum, when $\theta = \theta_m$		
	$v = \frac{v^2}{2}$ and 0		
	$x_m = \frac{1}{g} co c \theta_m$		
:(i)	$x = v \cos\theta t$	1 mark: eliminates the	
	$\therefore t = \frac{x}{vcos\theta}$	simultaneous equations of	
	$a = b + a \sin \theta t$ $\frac{1}{a t^2}$	motion	
	$y = n + v \sin\theta t - \frac{2}{2}gt^{-1}$		
	$y = h + v \sin\theta \cdot \frac{x}{v \cos\theta} - \frac{1}{2}g \left(\frac{x}{v \cos\theta}\right)^2$		

	$\therefore y = h + x \tan \theta - \frac{gx^2}{2x^2} \sec^2 \theta$		
	$2v^2$		
c(ii)	An enveloping parabola can be got by maximizing the height of the projectile for a given horizontal distance x , which will give us the path that encloses all possible paths.		
	$y = h + x tan\theta - \frac{gx^2}{2v^2} \sec^2 \theta$	1 mark: Differentiates y = h + ux - b	
	Let $u = tan\theta$	$\frac{gx^2}{2v^2}(1+u^2)$ and finds	
	$y = h + ux - \frac{gx}{2v^2}(1 + u^2)$	tan heta that maximises y .	
	$\frac{dy}{du} = x - \frac{gx^2}{2v^2} \times 2u$		
	$\frac{dy}{du} = 0$		
	$x \neq 0$		
	$x = \frac{gx^2}{2v^2} \times 2u \Longrightarrow u = \frac{v^2}{gx} \qquad 1 \text{ mark}$		
	Hence, the envelope is	1 mark: substitutes u and	
	$y_{max} = h + \left(\frac{v^2}{gx}\right)x - \frac{gx^2}{2v^2}\left(1 + \left(\frac{v^2}{gx}\right)^2\right)$	gets the equation of the envelope.	
	$= h + \frac{v^2}{g} - \frac{gx^2}{2v^2} - \frac{gx^2}{2v^2} \times \frac{v^4}{g^2 x^2}$		
	$= h + \frac{v^2}{g} - \frac{gx^2}{2v^2} - \frac{gx^2}{2v^2} \times \frac{v^4}{g^2 x^2}$		
	Hence, the equation of the envelope is		
	$\phi(x) = h + \frac{v^2}{2g} - \frac{gx^2}{2v^2}$		

c(iii)	At the point $x = c$, $P(x)$ and $\phi(x)$ intersect the plane $y = mx$.		
	$h + \frac{v^2}{2g} - \frac{gc^2}{2v^2} = mc$ $\frac{gc^2}{2v^2} + mc - \left(\frac{2gh + v^2}{2g}\right) = 0$ $c^2 + \frac{2v^2}{g}mc - \frac{2v^2}{g}\left(\frac{2gh + v^2}{2g}\right) = 0$	 2 marks: Equates the two functions and forms the simultaneous equation 1 mark: correctly solves to give the value of c, the x-coordinate of the point of impact. 	
	$c^{2} + \frac{2mv^{2}}{g}c - \frac{v^{2}}{g^{2}}(2gh + v^{2}) = 0$ 1 mark		
	Hence, the value of c is		
	$c = \frac{-\frac{2mv^2}{g} \pm \sqrt{\frac{4m^2v^4}{g^2} + \frac{4v^2}{g^2}(2gh + v^2)}}{2}$		
	$c = -\frac{mv^2}{g} \pm \frac{v^2}{g} \sqrt{m^2 + \frac{2gh + v^2}{v^2}}$		
	$c = -\frac{mv^2}{g} \pm \frac{v^2}{g} \sqrt{m^2 + \frac{2gh}{v^2} + 1} 1 \mathbf{mark}$		
c(iv)	At the point $x = c$, $P(x)$ and $\phi(x)$ intersect the plane $y = mx$. That is $c = x_m$.	3 marks: refers to the solution from (b), sets $c = x_m$ and uses the result in (ii) to prove the result, with reasoning	

From (b), the optimal launching angle θ_m that gives the maximum range x_m is:		
$x_m = \frac{v^2}{g} \cot \theta_m \qquad 1 \ \mathbf{mark}$	2 marks: refers to the solution from (c), sets $c = x_m$ and uses the result	
Hence, from (ii),	in (ii) to prove the result	
$c = x_m$ $-\frac{mv^2}{g} \pm \frac{v^2}{g} \sqrt{m^2 + \frac{2gh}{v^2} + 1} = \frac{v^2}{g} \cot \theta_m$	1 mark: refers to the result in (b) and identifies $c = x_m$ and attempts to	
$\cot \theta_m = \frac{g}{v^2} \left(-\frac{mv^2}{g} \pm \frac{v^2}{g} \sqrt{m^2 + \frac{2gh}{v^2} + 1} \right)$	solve	
$\cot heta_m = -m \pm \sqrt{m^2 + rac{2gh}{v^2} + 1}$		
Optimal angle of projection θ_m		
$\theta_m = \cot^{-1} \left(-m \pm \sqrt{m^2 + \frac{2gh}{v^2} + 1} \right)$		
However, $0 < \theta < \frac{\pi}{2}$		
Hence, $\cot \theta_m > 0$. and reject		

$$\cot \theta_{\rm m} = -m - \sqrt{m^2 + \frac{2gh}{v^2} + 1} < 0$$

Hence,
$$\cot \theta_{\rm m} = -m + \sqrt{m^2 + \frac{2gh}{v^2} + 1}$$